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The variation method was used to set upper bounds on the strength of the average A-nucleon potential 
in the hypertriton (AH3) required to reproduce the observed binding energy of that system for assumed 
hard-core radii of 0.2 F, 0.4 F, and 0.6 F. Only two-body A-nucleon potentials were considered. Although 
the well-depth parameter of the required potential increases as the assumed hard-core radius is increased, 
it seems unlikely that even the largest of the hard-core radii considered here would imply a bound state 
for the hyperdeuteron (AH2). The possibility that the scattering length and the effective range of the re
quired potential may be insensitive to the value of the hard-core radius is discussed. 

I. INTRODUCTION 

RECENT phenomenological nucleon-nucleon inter
action potentials, which have been deduced from 

analyses of nucleon-nucleon scattering data and from 
the observed properties of the deuteron, contain a hard 
core of radius about 0.5 F.1 The scattering data seem 
to require, for their explanation, the presence of a 
short-range repulsion in the interaction in most, if not 
all, states; this repulsion is usually represented by a 
hard core.1 The presence of a hard core in the nucleon-
nucleon potential suggests that a hard core may also 
be a characteristic of the A-nucleon interaction po
tential.2 

In the absence of extensive A-nucleon scattering data 
and on account of the apparent nonexistence of a bound 
state of the A-nucleon system (hyperdeuteron), at
tempts to deduce the features of the A-nucleon inter
action have been directed toward analyses of the 
binding-energy data of the established hypernuclei 
with A ^ 3 . 8 These analyses have so far been aimed at 
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1 See, for example, T. Hamada and I. D. Johnston, Nucl. Phys. 

34, 382 (1962), and the review by M. J. Moravcsik and H. P. 
Noyes, Ann. Rev. Nucl. Sci. 11, 95 (1961). 

2 For example, the assumption of the existence of a universal 
pion-baryon interaction leads to a pion-exchange contribution to 
the A-nucleon potential which is a linear combination of nucleon-
nucleon potentials [see, for example, D. B. Lichtenberg and M. 
Ross, Phys. Rev. 107, 1714 (1957)]. In this case, the existence 
of a hard core and a tensor component in the nucleon-nucleon 
interaction implies that these are also characteristics of the 
A-nucleon interaction. 

3 See, for example, R. H. Dalitz and B. W. Downs, Phys. Rev. 
I l l , 967 (1958), R. H. Dalitz, Proceedings of the Rutherford 

establishing gross features of the A-nucleon interaction; 
potentials which have been used are spin-dependent 
central potentials which have been considered to 
contain the effect of a possible tensor component.2-4 

Since analyses of hypernuclear binding energy data 
have been made in terms of effective central potentials, 
it is important to ask what effect the possible presence 
of a hard core can be expected to have in such analyses. 
An indication of the importance of a hard core in 
effective central potentials in reproducing observed 
binding energies can be obtained from studies of the 
very light nuclei in terms of such potentials. A con
sistent reproduction of the binding energies of the 
two-, three-, and four-nucleon systems has been ob
tained with effective central potentials having a hard 
core.5-7 On the other hand, when effective central 
potentials without hard cores, which are consistent 
with the two-nucleon binding energy and low-energy 
scattering data, are used in variation calculations, they 
lead to binding energies for the triton and the alpha 
particle in excess of the empirical values.8-10 It would, 

Jubilee International Conference, Manchester, 1961 (Heywood 
and Company, Ltd., London, 1961), p. 103, and A. R. Bodmer 
and S. Sampanthar, Nucl. Phys. 31, 251 (1962). 

4 Although there may well be a tensor component in the A-
nucleon interaction (see footnote 2), uncertainties in analyses of 
hypernuclear binding energy data (see the references in footnote 
3) would seem to make attempts to separate the effects of the 
central and tensor parts of the potential appear unpromising at 
this time. 

5 T . Ohmura (Kikuta), M. Morita, and M. Yamada, Progr. 
Theoret. Phys. (Kyoto) 15, 222 (1956); 17, 326 (1957). 

6 T . Ohmura, Progr. Theoret. Phys. (Kyoto) 22, 34 (1959). 
This paper corrected a systematic error in the papers of reference 
5. On account of this error, the expectation values of the kinetic 
energy of the three-nucleon system given in reference 5 were 
about 2% too large (AT«1 MeV for T«50 MeV). 

7 L. Cohen and J. B. Willis, Nuclear Forces and the Few-Nucleon 
Problem, edited by T. C. Griffith and E. A. Power (Pergamon 
Press, New York, 1960), p. 399, and H. C. Mang, W. Wild, and 
F. Beck, ibid., p. 403. 

8 See, for example, J. Irving, Phil. Mag. 42, 338 (1951). 
9 The success of central hard-core potentials in reproducing the 

binding-energy data of the lightest nuclei does not, of course, 

2730 



H Y P E R T R I T O N I N T E R M S O F H A R D - C O R E P O T E N T I A L S 2731 

therefore, seem that analyses of the hypernuclear 
binding-energy data should be made in terms of hard
core potentials to complement the studies which have 
been made in terms of potentials without hard cores.3 

In order to include the effect of a hard core in the 
A-nucleon interaction, Lichtenberg11 adapted the results 
of the triton variation calculations of Ohmura (Kikuta), 
Morita, and Yamada5 to the hypertriton for the case in 
which the range of the A-nucleon interaction is approxi
mately the same as that of the nucleon-nucleon inter
action.6 Dietrich, Folk, and Mang12 have recently used 
the independent-pair approximation of Gomes, Walecka, 
and Weisskopf13 to deduce the parameters of A-nucleon 
potentials with an attractive square well and a hard-core 
radius of 0.2 F. 

It is the purpose of this paper to report the results 
of variation calculations of the strength of the effective 
A-nucleon interaction in the hypertriton AH3 for several 
values of the hard-core radius. The attractive well was 
taken to have an exponential shape and a range 
corresponding to the simplest pion-exchange mechanism 
(two-pion exchange) which can give rise to a charge-
independent A-nucleon interaction. This choice of range 
implies a nonsymmetric structure for the hypertriton14; 
whereas, in the situation investigated by Lichtenberg,11 

the structure was taken to be symmetric, which is 
probably not realistic. 

The variation calculation is described in Sec. II, and 
the parameters of the potentials are discussed in Sec. 
III. The results of the calculations are given in Sec. IV 
and discussed in Sec. V, where a comparison is made 
with the work of Lichtenberg11 and of Dietrich et al.12 

The implications of the results for the possible binding 
of the hyperdeuteron are also discussed. 

imply that such potentials provide an adequate representation 
of the actual nucleon-nucleon interaction for the description of 
manifestations of that interaction other than these binding 
energies (see the references in footnote 1). In this connection, it 
should be noted that a detailed calculation of the binding energy 
of the triton by J. M. Blatt, G. H. Derrick, and J. N. Lyness, 
Phys. Rev. Letters 8, 322 (1962), in terms of nucleon-nucleon 
potentials which reproduce a wide variety of two-body data, 
failed to reproduce the experimental value. 

10 It might be noted that the effect of explicit consideration of 
the tensor potential in calculations of the binding energies of the 
very light nuclei is qualitatively the same as the effect of the 
introduction of a hard core. The binding energy of the triton has 
been reproduced by R. L. Pease and H. Feshbach, Phys. Rev. 
88, 945 (1952) and the binding energy of the alpha particle has 
been approximately reproduced by J. Irving, Proc. Phys. Soc. 
(London) A66, 17 (1953) with nucleon-nucleon potentials which 
have a tensor component but not a hard core. Although the 
presence of a tensor component in the nucleon-nucleon interaction 
is well established (see, for example, the references in footnote 1), 
the same cannot be said of the A-nucleon interaction at this time 
(see footnote 4). 

11 D. B. Lichtenberg, Nuovo Cimento 8, 463 (1958). 
12 K. Dietrich, R. Folk, and H. J. Mang, Proceedings of the 

Rutherford Jubilee International Conference, Manchester, 1961 
(Heywood and Company, Ltd., London, 1960), p. 165. 

13 L. C. Gomes, J. D. Walecka, and V. F. Weisskopf, Ann. 
Phys. (N. Y.) 3, 241 (1958). 

14 See, for example, R. H. Dalitz and JJ. W. Downs, Phys. Rev. 
110, 958 (1958), 

II. FORMULATION OF THE VARIATION PROBLEM 

The nucleon-nucleon and A-nucleon interactions in 
the hypertriton were taken to be two-body central 
potentials with exponential attractive wells and the 
same hard-core radius D.n 

Nucleon-nucleon: 

V(r)=> r<D 

A-nucleon: 
= - 7 0 e x p [ - i l ( r - D ) ] , r>D, 

U(r)= oc, r<D 
= - f / 0 e x p [ - X ( r - D ) ] , r>D. 

(2.1a) 

(2.1b) 

The nucleon-nucleon potential (2.1a), which is effective 
in the hypertriton, is that for the triplet spin state. It 
has been assumed in (2.1b) that the A-neutron and 
A-proton potentials are the same, in accordance with 
the charge independence of strong interactions; then 
U(r) is the average A-nucleon potential effective in the 
hypertriton.16 

The variation method was used to obtain an upper 
bound on the depth L\ of the average A-nucleon 
potential required to reproduce the observed binding 
energy B\ of the A particle in the hypertriton. The 
appropriate variation inequality is 

U0^ [ r + V+ (Bd+BA)Ny2P, (2.2) 

where A7 is the normalization integral, and T, V, and P 
are the expectation values of the total kinetic energy, 
the nucleon-nucleon potential (2.1a), and the average 
A-nucleon potential (2.1b) divided by —•£/<>, respec
tively ; Bd is the binding energy of the deuteron. 

It is convenient to formulate the variation problem 
(2.2) in the triangular coordinate system, in which the 
radial variables (rhr2,rz) are the three interparticle 
separations. In this coordinate system, it is possible to 
construct a trial wave function which takes into account 
the correlations between pairs of particles which is 
necessary if the variation method is to lead to reliable 
results.14 The trial wave function, appropriate to the 
hard-core potentials (2.1), was taken to be 

with 
+= Hrx)f(u)g(ri), 

/ W = 0, r<D 
= exp[ -a ( r - r> ) ] -exp[ - j3 ( r -D) ] , r>D, 

g(r) = 0, r <LD 
= e x p [ - 7 ( r - I > ) ] - e x p [ - 5 ( r - D ) ] , r>D, 

(2.3) 

(2.4a) 

(2.4b) 

16 In the absence of contrary evidence, this assumption about 
the equality of the hard-core radii is made for computational 
convenience. 

16 The relevant average is tftriput if the triplet interaction is 
the more attractive or (3 £/sinRiet-r-^triplet)/4 if the singlet 
interaction is the more attractive. The average A-nucleon potential 
and the nucleon-nucleon potential are to be considered to be 
effective central potentials which include the effect of the appro
priate tensor interactions. 
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describing the ground state in which each pair of are allowed to be different in order to take account of 
particles is in a relative S state.14 The separations ri a n asymmetric structure for the hypertriton.14 

and r2 are those of the two A-nucleon pairs, and r, is I n t h e trfangular coordinate system, the expectation 
that of the two nucleons. That the dependence of the , r AU , . ,. c , , , , , . / 0 oX j • ^ • • i. *. value of the kmetic energy for a bound system can be wave function (2.3) on rx and r2 is the same is consistent . , ,. , i 
with the requirements of the generalized Pauli principle, expressed in two equivalent forms when the wave 
The variation parameters (a,0) and (7,8) of the A- function depends only upon the interparticle sepa-
nucleon and nucleon-nucleon parts of the trial function rations, as it does in (2.3). These are17 

W(MA+M)/ dhp 2 # dhf, 2 ty \ ¥/ dhfr 2 ty \ ft2 ri2+r2
2-r3

2 d2^ r 1 ^( j fA+M)/ a v 2 # dy 2 # \ A V ^ 2 ^ \ 
r = U\ _ + + _ + U _ ( _ + \ 

J I 2iOfA \ ari2 n df! dr2
2 r2 dr2 / M \ af 3

2 r3 ar3 / 2 M A r i r 2 dri5f2 

! - r 2
2 ah/, 

2ML r2r$ dr2drz r&\ drzdri 

W r r2
2+r3

2-r i2 dV r3
2+n2-r2

2 dhp -n 
_j J ]\rir%rzdr\dr^r% (2.5a) 

>iJJ 
and 

ft2(MA+M)r/ # \2 / a^ \ 2 1 *V <¥ \2 &2 fi2+rf-rt d$ df r jft2(JfA+M)r/ a^ y / d ^ Y 1 * 7 # \ 

J 1 2MMA IN ari / \ ar2 / J M \ ar3 / 2MA f\r2 ar 1 ar2 

A2 frf+rf-ri2 a^ ty r3
2+ri2-r2

2 d$ d$ n 

+— + 
2ML r2rs br% dr$ r&\ drz dr\ J 

r\r2rzdr\dr2dr%. (2.5b) 

For any product wave function of the form (2.3) [including the case in which /(ri) is different from /(r2)] an 
expression for the expectation value of the kinetic energy, which is simpler than either (2.5a) or (2.5b), can be 
obtained by taking one-half the sum of these and using the relation 

Sty drj, ty 
$ = for i^j. (2.6) 

aridfj dfi dfj 

In this way the cross terms of the form (2.6) can be eliminated, and T becomes 

nh2(MA+M)r/ a^ \2 a2} 2$ a^ / a$ Y #¥ 2^ a$ 1 

J I 4MMA L \ dri J an2 n drx \ dr2 / dr2
2 r2 dr2 J 

ft2r/a^Y ^V 2^a^i i 
H ( — J —^ \rir2rzdridr2dr3. (2.7) 

2ML\an/ an2 r3ar3J) 
With the particular functions (2.4), (2.7) becomes 

J { 2MMA L fi J 

2ML r3 J 
rir2rzdridr2drz) (2.8) 

where a prime on a function denotes derivative with respect to the argument, and use has been made of the sym
metry of the wave function \p in the coordinates r 1 and r2. 

The domain of integration for the variables (rhr2>rz) must be consistent with the triangular inequalities fi+r2 
^r3 , r2+rz^rh r 3 +fi^r 2 and the additional restrictions, imposed by the presence of the hard core, that r{^Dy 

r2^Dy r{^D. The separation of the domain of integration used here was that proposed in reference 5: 

dridr2dra= drA dr%\ dr*- I drJ dr2 drz- I dr2 dr-A drx~ drzi drA dr2. (2.9) 
J J D J D J D JD JD J n+r2 JD J J> J r*+-rt JD JD J r*+ n n+r2 J D J & J r 2 + r , 

ill expe< 
expressions for the individual 

17 For a wave function, such as (2.3), which depends only upon the interparticle separations, all expectation values have a common 
factor $w* arising from the angle integrals. Since this factor cancels in (2.2), it is omitted from the expresi 
expectation values. 
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With the trial function given in (2.3) and (2.4) and the potentials (2.1), all the expectation values appearing 
in the variation inequality (2.2) can be expressed in terms of the two basic integrals 

{K(A,B,C)= [ r^'^-K^w^VrMdriMi, (2.10a) 

L(A,B,C) = \ e-^^^^^-^^^nndndr^n, (2.10b) 

which have closed algebraic forms. Expressions for all 
the expectation values in (2.2) are given in the Appendix 
in terms of the integrals (2.10). 

HI. POTENTIAL PARAMETERS 

The potential parameters (FO,T?) of the nucleon-
nucleon potential (2.1a) were chosen to reproduce the 
binding energy of the deuteron and the zero-energy 
triplet scattering length. These potential parameters, 
which were determined by Ohmura et a/.,5 are repro
duced in Table I. 

The attractive part of a hard-core potential can be 
characterized by the zero-energy scattering length a0 

and the effective range r0° which it would have if it 
were centered at the origin (that is, if r—D were 
replaced by r). These parameters are related to the 
scattering length a and the effective range r§ of the 
entire potential by5 

a°=a-D, (3.1a) 

roo=: (\-D/a)~2(r0-2D+2D2/a-2D*/3a2). (3.1b) 

The parameters (a,ro) of the average A-nucleon po
tential are not known; therefore, Eqs. (3.1) cannot be 
used to uniquely determine the potential parameters 
(f/o,X) in Eq. (2.1b). In this situation, we used the 
form which Eq. (3.1b) takes in the limiting case a —* » : 

b°=b-2Dy (3.1c) 

where b is the intrinsic range of the entire potential, 
and b° is that of the attractive well translated to the 
origin. The value 6=1.5 F was used; this corresponds 
to a range of (ft/2MTc) for a Yukawa potential without 
a hard core.1418 The values of the range parameter X 

TABLE I. Nucleon-nucleon potential parameters. 

D (F) VQ (McV) ri (F"1) 

~~02 286.2 1.895 
0.4 475.0 2.521 
0.6 947.0 3.676 

18 This A-nucleon range was chosen as being representative of 
the lowest-order pion-exchange mechanism which can give rise to 
a charge-independent A-nucleon interaction. Calculations of the 
A-nucleon potentials which arise from simple meson-exchange 
mechanisms indicate that it is more likely that the observed 
spin dependence of the A-nucleon interaction can be explained in 
terms of a dominant pion-exchange mechanism than in terms of 
a dominant kaon-exchange mechanism. See D. B. Lichtenberg 

in the A-nucleon potential (2.1b), which result from 
this choice of b and the use of (3.1c), are given in 
Table II.19 

The range parameters in Tables I and II lead to an 
appreciably more rapid fall-off of the potentials in the 
asymptotic region than that to be expected on the 
basis of the simplest pion-exchange mechanism antici
pated in each case. This effect, which becomes more 
pronounced with larger hard-core radii, is a consequence 
of the choice of a two-parameter function to represent 
the attractive well.20 In order to investigate the possible 
effects of these compressed (and therefore very deep) 
attractive wells, a calculation was made (with the 
single hard-core radius D=0.4 F) in which the asymp
totic form of the attractive wells for both A-nucleon 
and nucleon-nucleon potentials was taken to correspond 
to that expected from the relevant pion-exchange 
mechanisms. This leads to a range parameter X= 2.361 
F"1 (b°= 1.5 F) for the A-nucleon potential and 77= 1.180 
F-1 (J° =3.0 F) for the nucleon-nucleon potential. The 
depth F0= 128.9 MeV was taken for this nucleon-
nucleon potential in order to give the correct binding 
energy of the deuteron.21 Moreover, a final calculation 
was made with the A-nucleon potential described here 
and the nucleon-nucleon potential given in Table I for 
D=0.4F.22 

IV. RESULTS 

The variation expression (2.2) for the depth UQ of 
the average A-nucleon potential was minimized with 
respect to the variation parameters (a,0,Y,5) appearing 

TABLE II . A-nucleon potential range parameters. 

D (F) W (F) X (F"1) 

~ 0 2 LI 3.219 
0.4 0.7 5.059 
0.6 0.3 11.804 

and M. Ross, Phys. Rev. 107, 1714 (1957); 109, 2163 (1958); 
and F. Ferrari and L. Fonda, Nuovo Cimento 9, 842 (1958). 

19 See, for example, J. M. Blatt and J. D. Jackson, Phys. Rev. 
76, 18 (1949). 

20 For a discussion of more complex hard-core nucleon-nucleon 
potentials whose asymptotic form is consistent with the one-pion 
exchange mechanism see, for example, the references in footnote 1. 

21 This nucleon-nucleon potential has a scattering length 
a=*6.0 F and an effective range ^ = 2 . 5 F ; the correct values of 
these parameters for the triplet nucleon-nucleon potential are 
a ^ S ^ F a n d r o ^ l ^ F. 

22 These potentials are approximately those used in reference 11. 
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TABLE III . Results of the deuteron variation calculation. 

D(F) 

0.2 
0.4 
0.6 

T ( F " 1 ) 

0.566 
0.600 
0.632 

8 (F"1) 

5.58 
4.68 
5.00 

Bd (MeV) 

1.981 
1.916 
1.665 

in (2.4). Three of these parameters were fixed, and l/0 

was minimized with respect to the fourth. The varied 
parameter was subsequently set at its "best" value and 
UQ minimized with respect to one of the other pa
rameters. This procedure was carried through the set 
of four variation parameters and then iterated until the 
desired accuracy was obtained. The initial values of 
the nucleon-nucleon parameters (%5) were obtained by 
using the trial function g(f), given in (2.4b), in a 
variation calculation to maximize the binding energy 
of the deuteron. Similarly, the initial values of the 
A-nucleon parameters (a,0) were obtained by mini
mizing the depth of the A-nucleon potential required to 
give a fictitious bound A-nucleon system (the hyper-
deuteron) with zero binding energy. The results of 
these two-body calculations are given in Tables III 
and IV for the potential parameters given in Tables I 
and II. 

The values £ d = 2.225 MeV and J3A=0.2 MeV were 
used in the variation inequality (2.2). The results of 
the variation calculation are given in Table V for the 
potential parameters given in Tables I and II. It is 
interesting to note how close the optimum parameters 
(P>yfi) given in Table V are to those obtained in 
Tables III and IV for the two-body calculations.23 

That the parameter a differs appreciably in the two-
body and three-body calculations is not surprising 
because this parameter is most sensitive to the sepa
ration energy of the A particle in each system; and, in 
the fictitious hyperdeuteron, an incorrect separation 
energy was assumed. 

The results of the variation calculations using the 
potentials discussed following Table II are given in 

TABLE IV. Results of the "hyperdeuteron" variation calculation. 

D(¥) 

0.2 
0.4 
0.6 

a (F-i) 

0.588 
0.653 
0.792 

fi (F-1) 

7.90 
7.49 

11.78 

Uo (MeV) 

696.5 
1677 
8835 

23 At first glance, the trend of the optimum parameters 8 and /3 
in Tables III , IV, and V as functions of the hard-core radius D 
appears spurious. The same behavior of the larger of the two 
nucleon-nucleon parameters was, however, reported in references 
5 and 6. Variation calculations of the binding energy of the deu
teron with the trial function (2.4b) were made for hard-core radii 
£>=0.1 F, 0.3 F, and 0.5 F to supplement the calculations reported 
in Table III . The optimum parameter y was found to increase 
monotonically with increasing hard-core radius; on the other 
hand, the optimum parameter 8 was found to decrease as D 
increases from 0.1 F to 0.4 F and then to increase as D increases 
further. 

Table VI. In the last two rows of Table VI, the value 
X=2.361 F-1 (6°== 1.5 F) leads to the same value of the 
depth Uo of the A-nucleon potential and to nearly 
equal values for the optimum A-nucleon wave function 
parameters (a,/3) for nucleon-nucleon potentials of 
quite different range and depth. This would seem to 
indicate that, for a A-nucleon potential of given range, 
the A-nucleon parameters are relatively insensitive to 
the structure of the nucleon part of the hypertriton 
provided that the nucleon-nucleon potential is con
sistent with the binding energy of the deuteron. 

The A-nucleon potential parameters given in Tables 
V and VI were used to calculate the well-depth pa
rameter s,19 and the scattering length a and effective 
range r0 of the average A-nucleon potential16 according 
to Eqs. (3.1). These parameters are summarized in 
Table VII; the last row in this table corresponds to 
the last two rows in Table VI. 

It is inherent in the variation method that the value 
of Uo obtained from (2.2) is an overestimate. Previous 
calculations of UQ in terms of potentials without hard 
cores have indicated that reductions in Uo of the order 
of 10% might be expected with trial functions of 
greater flexibility than that given in (2.4),24 The effect 

TABLE V. Results of the variation calculation for the hypertriton. 

D ri V0 X Uo a & y 8 
(F) (F"1) (MeV) (F"1) (MeV) (F"1) (F"1) (F"1) (F"1) 

0.2 1.895 286.2 3.219 426.0 0.297 7.36 0.547 6.52 
0.4 2.521 475.0 5.059 1202 0.325 6.94 0.578 4.55 
0.6 3.677 947.0 11.80 7352 0.389 11.28 0.606 4.79 

that such an improvement would have on the scattering 
parameters is indicated in Table VIII, where the values 
of Uo were arbitrarily reduced by 10% from the values 
given in Table VII. 

V. CONCLUDING REMARKS 

Since the potential U(r) represents the average 
central, two-body A-nucleon interaction effective in 
the hypertriton when an 6* state is assumed for each 
A-nucleon pair,16 it is convenient to characterize U(r) 
by the 5-wave scattering parameters a and r0. The 
range of values to be expected for these parameters is 
indicated in Tables VII and VIII if the variation 
calculation described here leads to values of U0 within 
10% of the correct ones. An accurate analysis of the 
hypertriton in terms of Yukawa potentials of intrinsic 
range b= 1.5 F without hard cores led to the values24,25 

a « - 1 . 5 F , (5.1a) 

r 0 « 2.8 F. (5.1b) 
24 B. W. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959). 
26 The values (5.1) were taken from results reported in reference 

24 for 5 A =* 0.25 MeV, modified slightly to correspond to the 
current value 2^=0.20 MeV used here. An indication of the 
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Improvement of the values of UQ given in the first 
three rows of Table VII by less than 10% could bring 
the corresponding scattering lengths into agreement 
with (5.1a) for any value of the hard-core radius 
considered here, the corresponding effective ranges 
(2.4-2.5 F) being somewhat smaller than (5.1b). This 
suggests the conjecture that (5.1) may provide an 
approximate characterization of the average A-nucleon 
potential in the hypertriton independent of the value 
of the hard-core radius for D<0.6 F. In this connection 
it should be recalled that the intrinsic ranges b° which 
led to the results in the first three rows of Tables VII 
and VIII were determined from Eq. (3.1c), which is 
related to the equation [Eq. (3.1b)] which preserves 
the effective range of a potential with the introduction 
of a hard core. Neither the scattering lengths nor the 
effective ranges listed in the fourth row of Tables VII 
and VIII bracket the values (5.1). Reduction of the 
value of UQ by more than 10% would be required here 
to bring the scattering length into agreement with 
(5.1a), and the corresponding value of YQ would be ap
preciably larger than (5.1b). It is, of course, possible 
that the results in the fourth rows of Tables VII and 

TABLE VI. Results of the variation calculation for the hypertriton 
for potentials having a hard-core radius Z>=0.4 F. 

(F) (F-1) (MeV) (F-1) (MeV) (F"1) (F"1) (F"1) (F"1) 

0.4 2.521 475.0 5.059 1202 0.325 6.94 0.578 4.55 
0.4 1.180 128.9 2.361 234.5 0.200 4.40 0.414 2.99 
0.4 2.521 475.0 2.361 234.5 0.222 4.30 0.580 4.67 

VIII describe the actual situation for Z>=0.4F better 
than do those in the second rows. In any case, compari
son of the results in the second and fourth rows of these 
tables indicates the range dependence of the average 
A-nucleon interaction required to reproduce the binding 
energy of the hypertriton. 

The range parameter X of the average A-nucleon 
potential, which led to the results in the fourth row of 
Table VII, is essentially that used by Lichtenberg11 for 
a potential of the form (2.1b) with Z>=0.4 F. The 
value of UQ that he reported leads to a well-depth 
parameter 5 = 0.88, a scattering length a— —7.6 F, and 
an effective range r0=2.7 F. The values of these 
parameters indicate that Lichtenberg required a 
stronger potential than that given by the fourth row 
of Table VII. A part of this difference is to be expected 
on account of the error in the work of Ohmura et a/.,5*6 

upon which Lichtenberg's calculations were based. The 
rest of the difference is presumably due to the fact that 
Lichtenberg used a trial function of the form given in 
(2.3) and (2.4) in which the A-nucleon variation 

shape dependence of the scattering length r0 is given in reference 
14, where results of analyses of the hypertriton in terms of 
exponential and Yukawa potentials are reported. 

TABLE VII. Well depth and scattering parameters 
of A-nucleon potentials. 

IMF) 

0.2 
0.4 
0.6 
0.4 

Uo (MeV) 

426.0 
1202 
7352 
234.5 

P(F) 

1.1 
0.7 
0.3 
1.5 

s 

0.744 
0.851 
0.955 
0.762 

a(F) 

-2.20 
-2.56 
-4.09 
-3.20 

fo(F) 

2.13 
2.01 
1.80 
3.32 

parameters (a,0) were taken to be the same as the 
nucleon-nucleon parameters (T,5). The sets of optimum 
parameters given in the third row of Table VI, which 
we found in the corresponding case, are not the 
same.26 

The results of the present paper can also be compared 
with those of Dietrich et a/.,12 for a hard-core radius 
D=0.2 F. Their results for an attractive square well 
with an intrinsic range 5°= 1.08 F lead to a well-depth 
parameter 5=0.76, a scattering length a= —2.6 F, and 
an effective range rQ=1.9 F for the average A-nucleon 
potential in the hypertriton. These parameters corre
spond to a slightly stronger potential than that reported 
in the first row of Table VII, whose attractive well has 
essentially the same intrinsic range.27 

For a potential which is characterized by an effective 
range and a negative scattering length (and, therefore, 
by a well-depth parameter s<l), Eqs. (3.1) imply that 
the well-depth parameter will be larger, the larger the 
value of the hard-core radius. This leads one to specu
late, as Lichtenberg11 did, on what value of hard-core 
radius might be required in order that the bound state 
of the hypertriton would imply a bound hyperdeuteron. 
The A-nucleon interaction which might lead to a bound 
hyperdeuteron is the more attractive of the triplet and 
singlet interactions. If the triplet is the more attractive, 
then the hyperdeuteron potential is the same as the 
average potential effective in the hypertriton.16 The 
well-depth parameters given in Table VII show that, 
in this case, the hyperdeuteron would not be expected 
to exist for a hard-core radius of 0.6 F or less. If the 
singlet interaction is the more attractive, then the 
well-depth parameter s8 which would be appropriate to 
the hyperdeuteron is related to the average well-depth 

TABLE VIII. Well depth and scattering parameters of 
A-nucleon potentials of reduced strength. 

D(F) 

0.2 
0.4 
0.6 
0.4 

U* (MeV) 

383.4 
1082 
6617 
211.0 

P(F) 

1.1 
0.7 
0.3 
1.5 

s 

0.670 
0.766 
0.860 
0.686 

a(F) 

-1.49 
-1.31 
-0.76 
-2.08 

TO (F) 

2.47 
2.58 
3.49 
3.90 

26 It was pointed out by Lichtenberg in reference 11 that an 
improvement is to be expected if (a,(3) are allowed to differ from 
(7,5). 

27 It should be noted that the method of calculation reported 
in reference 12 is quite different from that used in the present 
paper; see Sec. I. 
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parameter J calculated in this paper by1* 

(5.2) 

where st/s9 is the ratio of the well-depth parameters of 
the triplet and singlet potentials. Empirical estimates 
of this ratio, based on analyses of the hypertriton and 
one other light hypernucleus in terms of A-nucleon 
potentials with an intrinsic range ^=1.5F, are 0.45 for 
potentials without a hard core24 and 0.55 for potentials 
with a hard-core radius D—Q.2 F.12 Both the value of 
this ratio and the validity of expression (5.2) depend 
upon the absence of appreciable three-body A-nucleon 
interactions.28 Even in the absence of three-body 
interactions, the ratio st/s8 should be determined for 
each assumed value of the hard-core radius before (5.2) 
can be applied with any certainty. As an indication of 
the results which might be obtained, we use (5.2) with 
the value st/s8=0.5 suggested by existing estimates. 
This leads to s8=8s/7 and to an implied bound hyper-
deuteron for 5^7/8. A value of s in excess of this 
critical value is given in Table VII for D—0.6 F; an 
improvement in this calculation by less than 10% (as 

indicated in Table VIII) would, however, reduce 5 below 
the critical value. These estimates indicate that a 
hard-core radius of 0.6 F or more would be required in 
order for the existence of the hypertriton to imply the 
existence of a bound hyperdeuteron. 

An improvement in the results reported here could 
be expected with the use of a trial function of the form 
(2.3) with each factor being of the form 

{exp[-a(r~Z>)]-exp[-/3(r~L>)]} 

+x{ex&-a'(r-D)]-expt-p'(r-D)J}, (5.3) 

analogous to the trial function used by Downs and 
Dalitz24 for potentials without a hard core. The use of 
such a trial function would require an appreciably 
greater computational effort than that expended in the 
present work, but would not require any modification 
in the formulation of the variation problem outlined 
here. The extent of the improvement which can be 
obtained with a more flexible trial function, such as 
that suggested above, will have to be known before the 
conjecture following (5.1) can be taken seriously. 

APPENDIX 

Explicit expressions for the expectation values appearing in the variation inequality (2.2) are given here in 
terms of the integrals K and L denned in (2.10).17 Algebraic expressions for these integrals, which can be obtained 
from the basic integral 

I(A,B,C)- ._ I e-A(n-D)-B0 r-D)-C(r*-D)dridr^rz 

1 -BD 

are 

K(A,B,C)=-e(A+B+<»D' 

ABC A(A+B)(A+C) B(A+B)(B+C) C(A+C)(B+C) 

3 1 r D2 D2 D2 D D D 1 i 
e-u+B+c)nI{AyBjC) = p 3 + _ + _ + _ + _ _ + _ _ + _ + 

dAdBdC ABCL A B C AB AC BC ABC 

(Al) 

A(A+B)(A+C)l 

2 

2D*-
D2 3D2 3D2 2D 2D D D W 

+ + A A+B A+C (A+B)2 (A+C)2 A(A+C) A(A+B) (A+C) (A+B) 

1 
2D3-

D2 3D2 3D2 

(A+B)2(A+C) (A+B)(A+C)2 A(A+B)(A+C)J B(A+B)(B+C)L B A+B B+C 

2D 2D D D AD 2 2 
+ + + —+ + + 

(A+B)2 (B+C)2 B(A+B) B(B+C) (A+B)(B+C) (A+B)2(B+C) (A+B)(B+C)2 

1 1 e~CD r D2 3D2 3D2 2D 2D D 

;]-B(A+B)(B+C)J C(A+C)(B+C)l 

D \D 

Z>2 3£»2 3D2 

2LP+—+ + + 

+ 

C A+C B+C (A+Cf (B+C)* C(A+C) 

2 2 1 

C{B+C) (A+C)(B+C) (A+QHB+C) {A+C){B+Cf C(A+C)(B+C)J 
(A2) 

28 For a discussion of the effect of three-body A-nucleon interactions see, for example, A. R. Bodmer and S. Sampanthar, 
Nucl. Phys. 31, 251 (1962). H 
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and 
d2 

L (A ,B,C) = eu+B+C)D e-u+B+oDj (A 

dBdC 

1 r D D 1 -i 

ABCL B C BCA 

-ID2 

)L 

D D 

+ + 
1 

A(A+B)(A+C)L A+B A+C (A+B)(A+C) 

6-BD r D D 3D 1 

B {A+B){B+cJLLr'fB^A+B^B+C^B(B+C) (A+B)(B+C) (B+C)2J 
2D2 

r D D 3D 
- 2D2-* 1 1 

1 
+ -i. 

C(A+C)(B+C)l C A+C B+C C{B+C) (A+C)(B+C) (B+C)U 

The normalization integral is 

where 

N= £ dijtK^Bsfik), 

Ai=Bi=2a, Ci=2y; 

A2=B2=a+p, Ci=y+8; 

A3=Bt=2p, C8=25. 

(A3) 

(A4) 

(A5) 

The variation parameters (a,0,Y,S) are defined in (2.4). The expansion coefficients in (A4) are 

^222= —8, dijk=4: if two indices are 2 (A6) 

and, otherwise, 

dijk~ \ 
1 

—2] 
if i+j+k is 

odd 

[ even J 

The values of the arguments A^ B» and C* given in (A5) and those of the expansion coefficients di,k given in 
(A6) are used throughout the Appendix. 

The expectation value of the kinetic energy is 

where 
1-1 

¥(MA+M) 3 ¥ 3 
^ = ~ — — — ( « - « 2 E duhK(A*Bhck)+—(y-sy E daMA^c*), 

IMML /.*-* 2M t./-i 

MMA I /.*-* 

and 
Wi 3 ( 7 + a ) 3 3 

Tz=—\y E <*«*L(C\^<A)+ E d2ijL(C2,A<,Bj)+d E duMCt^i^i) 
Mi *.?«i 2 *\7-i t.y-i 

The expectation value of the nucleon-nucleon potential (2.1a) is 

(A7a) 

(A7b) 

»(Mt+M)t 3 ( a + j 8 ) 3 3 1 
^2= J a E * i*L( i< iAA)+ E <*ti*L(i4«,£/A)+i8 E ditkLiAtflifik) , (A7c) 

2 >\*-i y,fc-i J 

(A7d) 

F=~F0 E ^ ^ ( ^ ^ A O , (A8a) 
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where 
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and that of the average A-nucleon potential (2.1b) divided by — UQ is 

(A8b) 

P = E dijkK(A/,BhCk)y 
J,/,*—1 

where 
Ai'=A<+\. 

The parameters ij and X are the potential range parameters given in (2.1). 

(A9a) 

(A9b) 

P H Y S I C A L R E V I E W - V O L U M E 1 2 9 , N U M B E R 6 15 M A R C H 1 9 6 3 

Propagation of the Single-Scattering Distribution in Multiple Scattering: 
Muon Scattering in Iron* 

NORRIS A. NlCKOLSf AND WALTER H . B ARK AS 

Lawrence Radiation Laboratory, University of California, Berkeley, California 
(Received 26 October 1962) 

The moments of the projected angular distribution of the single-scattering process are shown to be deriv
able from the emergent angular distribution of a beam that has traversed a thick absorber. Since very small 
deflections do not contribute to the observed moments, ambiguity is avoided by adopting a formulation of 
the electronic screening that leads to a definite total scattering cross section. The theory is applied to an 
experiment in which 2-BeV muons are incident on an iron scatterer 18 in. thick. The observed angular 
distribution is analyzed. It is shown that the nuclear electromagnetic form factor derived from the muon 
data is consistent with that found from electron scattering, and is completely incompatible with a point-
nucleus model. 

I. INTRODUCTION 

BECAUSE they are thought to interact only with 
the distribution of charges and currents in an 

atomic nucleus, charged leptons have been considered 
excellent probes for a study of the detailed structure 
of atomic nuclei. Extensive use has already been made 
of electrons for this purpose.1 In some respects muons 
should be even better suited for this task, but until 
recently the only "beams*' of muons available were 
those of the cosmic rays. A complication also was intro
duced when muons were reported to scatter2,3 as pre-

* Work done under the auspices of the U. S. Atomic Energy 
Commission. 

f Present address: Lockheed California Company, Los Angeles, 
California. 
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dieted by the Moliere theory,4 which is inapplicable if 
the nucleus cannot be represented by a point charge. 

In this paper we describe an experiment designed to 
study this question. Since it was initiated, however, 
results have been reported by other investigators that 
leave little reason to believe that the muon scatters 
anomalously. Decisive experiments were carried out by 
Connelly et al,b Masek et o/.,6 Kim et al.,7 Citron et a/.,8 

and others. Our results, therefore, are merely confirma
tory, but in obtaining them we have introduced a new 
method for analyzing the data that presumably has 
utility for many related problems in high-energy 
physics. 

After a beam of particles has penetrated a finite 
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